27,862 research outputs found

    Sociological Knowledge and Transformation at ‘Diversity University’, UK

    Get PDF
    This chapter is based on a case study of one UK university sociology department and shows how sociology knowledge can transform the lives of ‘non-traditional’ students. The research from which the case is drawn focused on four departments teaching sociology-related subjects in universities positioned differently in UK league tables. It explored the question of the relationship between university reputation, pedagogic quality and curriculum knowledge, challenging taken-for-granted judgements about ‘quality’ and in conceptualising ‘just’ university pedagogy by taking Basil Bernstein’s ideas about how ‘powerful’ knowledge is distributed in society to illuminate pedagogy and curriculum. The project took the view that ‘power’ lies in the acquisition of specific (inter)disciplinary knowledges which allows the formation of disciplinary identities by way of developing the means to think about and act in the world in specific ways. We chose to focus on sociology because (1) university sociology is taken up by all socio-economic classes in the UK and is increasingly taught in courses in which the discipline is applied to practice; (2) it is a discipline that historically pursues social and moral ambition which assists exploration of the contribution of pedagogic quality to individuals and society beyond economic goals; (3) the researchers teach and research sociology or sociology of education - an understanding of the subjects under discussion is essential to make judgements about quality. ‘Diversity’ was one of four case study universities. It ranks low in university league tables; is located in a large, multi-cultural English inner city; and, its students are likely to come from lower socio-economic and/or ethnic minority groups, as well as being the first in their families to attend university. To make a case for transformative teaching at Diversity, the chapter draws on longitudinal interviews with students, interviews with tutors, curriculum documents, recordings of teaching, examples of student work, and a survey. It establishes what we can learn from the case of sociology at Diversity, arguing that equality, quality and transformation for individuals and society are served by a university curriculum which is research led and challenging combined with pedagogical practices which give access to difficult-to-acquire and powerful knowledge

    Converting energy from fusion into useful forms

    Full text link
    If fusion power reactors are to be feasible, it will still be necessary to convert the energy of the nuclear reaction into usable form. The heat produced will be removed from the reactor core by a primary coolant, which might be water, helium, molten lithium-lead, molten lithium-containing salt, or CO2. The heat could then be transferred to a conventional Rankine cycle or Brayton (gas turbine) cycle. Alternatively it could be used for thermochemical processes such as producing hydrogen or other transport fuels. Fusion presents new problems because of the high energy neutrons released. These affect the selection of materials and the operating temperature, ultimately determining the choice of coolant and working cycle. The limited temperature ranges allowed by present day irradiated structural materials, combined with the large internal power demand of the plant, will limit the overall thermal efficiency. The operating conditions of the fusion power source, the materials, coolant, and energy conversion system will all need to be closely integrated.Comment: 22 pages, 4 figures, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy December 11, 201

    Experimental creep data for a built-up aluminum/titanium structure subjected to heating and loading

    Get PDF
    Experimental creep, temperature, and strain data resulting from a laboratory experiment on a built-up aluminum/titanium structure are presented. The structure and the experiment are described in detail. A heating and loading experiment lasting approximately six hours is conducted on a test structure. Considerable creep strain resulted from compressive stresses in the heated skin. Large residual stresses were found after the experiment was completed. The residual stresses in the substructure frames were large enough to preclude further cycles of creep experiments with this built-up structure because of concern that the frame webs would buckle

    1/N_c Expansion of the Heavy Baryon Isgur-Wise Functions

    Get PDF
    The 1/N_c expansion of the heavy baryon Isgur-Wise functions is discussed. Because of the contracted SU(2N_f) light quark spin-flavor symmetry, the universality relations among the Isgur-Wise functions of \Lambda_b to \Lambda_c and \Sigma_b^{(*)} to \Sigma_c^{(*)} are valid up to the order of 1/N_c^2.Comment: 7 pages, latex, no figures, to appear in Phys. Rev.

    A Comparison of Semi-Analytic and Smoothed Particle Hydrodynamics Galaxy Formation

    Get PDF
    We compare the statistical properties of galaxies found in two different models of hierarchical galaxy formation: the semi-analytic model of Cole et al. and the smoothed particle hydrodynamics (SPH) simulations of Pearce et al. Using a `stripped-down' version of the semi-analytic model which mimics the resolution of the SPH simulations and excludes physical processes not included in them, we find that the two models produce an ensemble of galaxies with remarkably similar properties, although there are some differences in the gas cooling rates and in the number of galaxies that populate halos of different mass. The full semi-analytic model, which has effectively no resolution limit and includes a treatment of star formation and supernovae feedback, produces somewhat different (but readily understandable) results. Agreement is particularly good for the present-day global fractions of hot gas, cold dense (i.e. galactic) gas and uncollapsed gas, for which the SPH and stripped-down semi-analytic calculations differ by at most 25%. In the most massive halos, the stripped-down semi-analytic model predicts, on the whole, up to 50% less gas in galaxies than is seen in the SPH simulations. The two techniques apportion this cold gas somewhat differently amongst galaxies in a given halo. This difference can be tracked down to the greater cooling rate in massive halos in the SPH simulation compared to the semi-analytic model. (abridged)Comment: 19 pages, 13 figures, to appear in MNRAS. Significantly extended to explore galaxy progenitor distributions and behaviour of models at high redshift

    The Decuplet Revisited in χ\chiPT

    Full text link
    The paper deals with two issues. First, we explore the quantitiative importance of higher multiplets for properties of the Δ\Delta decuplet in chiral perturbation theory. In particular, it is found that the lowest order one--loop contributions from the Roper octet to the decuplet masses and magnetic moments are substantial. The relevance of these results to the chiral expansion in general is discussed. The exact values of the magnetic moments depend upon delicate cancellations involving ill--determined coupling constants. Second, we present new relations between the magnetic moments of the Δ\Delta decuplet that are independent of all couplings. They are exact at the order of the chiral expansion used in this paper.Comment: 7 pages of double column revtex, no figure

    Does gravity cause load-bearing bridges in colloidal and granular systems?

    Get PDF
    We study structures which can bear loads, "bridges", in particulate packings. To investigate the relationship between bridges and gravity, we experimentally determine bridge statistics in colloidal packings. We vary the effective magnitude and direction of gravity, volume fraction, and interactions, and find that the bridge size distributions depend only on the mean number of neighbors. We identify a universal distribution, in agreement with simulation results for granulars, suggesting that applied loads merely exploit preexisting bridges, which are inherent in dense packings

    Universal velocity distributions in an experimental granular fluid

    Full text link
    We present experimental results on the velocity statistics of a uniformly heated granular fluid, in a quasi-2D configuration. We find the base state, as measured by the single particle velocity distribution f(c)f(c), to be universal over a wide range of filling fractions and only weakly dependent on all other system parameters. There is a consistent overpopulation in the distribution's tails, which scale as f∝exp⁡(const.×c−3/2)f\propto\exp(\mathrm{const.}\times c^{-3/2}). More importantly, the high probability central region of f(c)f(c), at low velocities, deviates from a Maxwell-Boltzmann by a second order Sonine polynomial with a single adjustable parameter, in agreement with recent theoretical analysis of inelastic hard spheres driven by a stochastic thermostat. To our knowledge, this is the first time that Sonine deviations have been measured in an experimental system.Comment: 13 pages, 15 figures, with minor corrections, submitted to Phys. Rev.
    • 

    corecore